If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2=25
We move all terms to the left:
j2-(25)=0
We add all the numbers together, and all the variables
j^2-25=0
a = 1; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·1·(-25)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*1}=\frac{-10}{2} =-5 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*1}=\frac{10}{2} =5 $
| 25=50–z² | | 36=c2 | | 8+4r=-2r-10 | | 7=2(3.14)x7 | | 8x+{x-1}=15x-10 | | y+12=4^2+8 | | 25=x+11;x= | | 49=d2 | | 10x+12=12(5x+6) | | 3.2=6.8+f | | 10x+12=10(5x+6) | | 6=x+4;x | | 2x^2-8x-13=-5 | | k-11=1 | | -7(n+9)=3(15-n) | | 4.x+27=49 | | x+15)+(3x-17)=90 | | 8=2y-12 | | 4=c2 | | 6r=27–3r | | 0=–(p+–1) | | 144=a2 | | x+15)+(3x-17)=180 | | .5/3=2.25/x | | 3(0.5x-8)=3/2x-1.4 | | 6=x+4;x= | | 6x+2x+x=280 | | x+5=-35+6x | | 4y^2=180 | | x2=140 | | 2a+4a-10=-10-(-30) | | -3x2+3x+4=0 |