If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2=2
We move all terms to the left:
j2-(2)=0
We add all the numbers together, and all the variables
j^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| 9+7x+3x=89 | | x/2-20=-14 | | -2/5x-7/15x+1/3x=-48 | | -7x+10-6x=-94 | | 10t+25=130 | | 20+3x=26+2x | | 3x-5+5x=-13 | | 5k2+12-108=0 | | .375(5x-3)=72 | | 30+.8x=26.16 | | -2(2+x)=8(x+7) | | -4(8+u)=-4 | | 8x-3(2)=10x+30 | | 4u+19=63 | | 103+X=17+4x | | 4=r–3 | | 2x-4x+8x=36 | | -4(1-2x)=7(3x+5) | | 49.98+.14x=35.98+.18x | | -.56x+0.26x=6.6 | | 7x+5-2x=30 | | 5(y+-25)=-55 | | (2/3x)+4=10 | | 3x-35=11x-85 | | D=4/3(m-85) | | -6g-10=4g+10 | | 2(z−54)=4(z−86) | | -v3=1 | | -8(-7-n)=-8(1-5n) | | 20=3-5(x-1) | | g-58/5=5 | | -6-10=-4g+10 |