j2-7/3=25

Simple and best practice solution for j2-7/3=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for j2-7/3=25 equation:



j2-7/3=25
We move all terms to the left:
j2-7/3-(25)=0
determiningTheFunctionDomain j2-25-7/3=0
We add all the numbers together, and all the variables
j^2-25-7/3=0
We multiply all the terms by the denominator
j^2*3-7-25*3=0
We add all the numbers together, and all the variables
j^2*3-82=0
Wy multiply elements
3j^2-82=0
a = 3; b = 0; c = -82;
Δ = b2-4ac
Δ = 02-4·3·(-82)
Δ = 984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{984}=\sqrt{4*246}=\sqrt{4}*\sqrt{246}=2\sqrt{246}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{246}}{2*3}=\frac{0-2\sqrt{246}}{6} =-\frac{2\sqrt{246}}{6} =-\frac{\sqrt{246}}{3} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{246}}{2*3}=\frac{0+2\sqrt{246}}{6} =\frac{2\sqrt{246}}{6} =\frac{\sqrt{246}}{3} $

See similar equations:

| 7m+2m−8m−1=9 | | 2(f+11)+3=-7 | | (j2-7)/3=25 | | (7x-46)=(3x+6) | | 5w-11=39 | | 2(c=1)=10 | | 2x-4(5+6x)=112 | | r/2+60=65 | | 6x4(3x8)=16 | | t−11.6=2.75 | | 19x^2+5=180 | | 2.5-0.03x=-1.49 | | 12x+5x−13x−1=7 | | X/9-1=x-10 | | 8r+-11r=3 | | y+41=894 | | 2x2+6=24 | | 2x/15+10=20 | | -6-5(-7x-8)=-1 | | n/4-7=-3 | | (3x-34)=(2x+21) | | ×-62,500=0.25y | | -22k=-396 | | 14+3x=56-2x | | -555=g+-155 | | 9.4281x10^9=x | | 2÷5y-5÷8y=5÷12 | | 5(y-7)+7y=-23 | | -3(2x+6)=-10 | | 7u=980 | | 2x+4=+1 | | y-(7)=-4 |

Equations solver categories