If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2+8j+5=0
We add all the numbers together, and all the variables
j^2+8j+5=0
a = 1; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·1·5
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{11}}{2*1}=\frac{-8-2\sqrt{11}}{2} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{11}}{2*1}=\frac{-8+2\sqrt{11}}{2} $
| 2x+2=107 | | 2q2+5q+1=0 | | 13x-6=14x-1 | | 4-2x=2x+5 | | 3u2+7u+2=0 | | 6x+4x=14 | | 9x-10=-190 | | 6x+4/2=6x+2 | | 6.4x-10.6=40.6 | | 13x-9=12x+52 | | 1/2x+1/4x+220=x | | 3(x+5=45 | | 12-2x=-0.5+0.5x | | 3{t+4}=18 | | −1867=6(17n−6)+5 | | 12-2p=-1/2+1/2p | | X^2+83.75x=58600 | | 2x-x-4=6 | | |4x=20|=8 | | 72=18v-9v | | (2x+110)=96 | | 40=x+51 | | X+7/3x=120 | | x-2=-x+10 | | x+4/20=5/4 | | 7a=-8+3a | | 2=3(u-4)-5u | | 4r-4=-9+r | | -6u+40.8=2.4 | | -3x-3=-2x+1 | | -2.75=u/3+1 | | 5x-3=-6x+8 |