If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j2+40j=0
We add all the numbers together, and all the variables
j^2+40j=0
a = 1; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·1·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*1}=\frac{-80}{2} =-40 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*1}=\frac{0}{2} =0 $
| 19p-18=20+3p+10 | | (2x+5)=73 | | 6x+18=8x+12−2x+6 | | 10+2.50h=5.50+h | | -21-15x=219 | | -3y-8=25 | | 3x-15=30+9 | | 12t—4(t—5)=52 | | 40+47x=180 | | 8x-6+2x=2x+12 | | 1.50x-4=25 | | 3r^2-3r+14=0 | | -x+6-7=-5(x+4) | | -3y-8=-25 | | k15=-15 | | 6x-23=55-7x | | 6x+-4=x5 | | U=10+6u | | 1/4x=1/2(x+4) | | -9-3u=1-5u+8 | | 44+47x=180 | | x+7=54 | | 23-2p=17 | | $3.40+$1.19+$0.15x=$4.99+$0.10x | | 6(x+3)=8x+12−2x+6 | | 5x+9-4x=78+2x= | | 6x+6x-7=5 | | 4x-1.50=25 | | d+0.21d=1.21 | | 8(x+2)+7=8x+4 | | x-32=139 | | 1/2(4x-8)-(3x-1)=-2 |