int(5v-u)du+(3v-7u)dv=0

Simple and best practice solution for int(5v-u)du+(3v-7u)dv=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for int(5v-u)du+(3v-7u)dv=0 equation:


Simplifying
int(5v + -1u) * du + (3v + -7u) * dv = 0

Reorder the terms:
int(-1u + 5v) * du + (3v + -7u) * dv = 0

Reorder the terms for easier multiplication:
int * du(-1u + 5v) + (3v + -7u) * dv = 0

Multiply int * du
dintu(-1u + 5v) + (3v + -7u) * dv = 0
(-1u * dintu + 5v * dintu) + (3v + -7u) * dv = 0

Reorder the terms:
(5dintuv + -1dintu2) + (3v + -7u) * dv = 0
(5dintuv + -1dintu2) + (3v + -7u) * dv = 0

Reorder the terms:
5dintuv + -1dintu2 + (-7u + 3v) * dv = 0

Reorder the terms for easier multiplication:
5dintuv + -1dintu2 + dv(-7u + 3v) = 0
5dintuv + -1dintu2 + (-7u * dv + 3v * dv) = 0
5dintuv + -1dintu2 + (-7duv + 3dv2) = 0

Solving
5dintuv + -1dintu2 + -7duv + 3dv2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(5intuv + -1intu2 + -7uv + 3v2) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(5intuv + -1intu2 + -7uv + 3v2)' equal to zero and attempt to solve: Simplifying 5intuv + -1intu2 + -7uv + 3v2 = 0 Solving 5intuv + -1intu2 + -7uv + 3v2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-5intuv' to each side of the equation. 5intuv + -1intu2 + -7uv + -5intuv + 3v2 = 0 + -5intuv Reorder the terms: 5intuv + -5intuv + -1intu2 + -7uv + 3v2 = 0 + -5intuv Combine like terms: 5intuv + -5intuv = 0 0 + -1intu2 + -7uv + 3v2 = 0 + -5intuv -1intu2 + -7uv + 3v2 = 0 + -5intuv Remove the zero: -1intu2 + -7uv + 3v2 = -5intuv Add 'intu2' to each side of the equation. -1intu2 + -7uv + intu2 + 3v2 = -5intuv + intu2 Reorder the terms: -1intu2 + intu2 + -7uv + 3v2 = -5intuv + intu2 Combine like terms: -1intu2 + intu2 = 0 0 + -7uv + 3v2 = -5intuv + intu2 -7uv + 3v2 = -5intuv + intu2 Add '7uv' to each side of the equation. -7uv + 7uv + 3v2 = -5intuv + intu2 + 7uv Combine like terms: -7uv + 7uv = 0 0 + 3v2 = -5intuv + intu2 + 7uv 3v2 = -5intuv + intu2 + 7uv Add '-3v2' to each side of the equation. 3v2 + -3v2 = -5intuv + intu2 + 7uv + -3v2 Combine like terms: 3v2 + -3v2 = 0 0 = -5intuv + intu2 + 7uv + -3v2 Simplifying 0 = -5intuv + intu2 + 7uv + -3v2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| Y-0=-1/2(x-1) | | 7+z=16 | | 2x=2048 | | 2r+3=14r+6 | | 17h+2h-9h-9h=16 | | X-v^2=w | | 1/1/x=0 | | 3r+6=9r+8 | | -12-(-89)/4 | | (X-3)^-2/3=1/3 | | x/2=14.00 | | 66+54= | | 4-y-1/y | | -6(10)=-6(7)-6(x) | | 10p-7p=12 | | 13c=78+7c | | -2v-6=-6(v-3) | | 3y-15x+21x=a(y-5xy+7x) | | 8m-m=5 | | 16x-12=6x+38 | | 12(z+3)-4(z-1)=4(z-1)+3(z-3) | | ln(x+1)-Ln((x-1)(x-1))=0 | | 3(u-3)=-8u-31 | | 4t^2-5t+9=0 | | 6y^2-3y^3= | | -9u+10=-5(u+6) | | -2x+1=-6-x | | ln(x+1)-Ln(x-1)(x-1)=0 | | 7(2-3w)=18 | | 5(4+3)=.5(40+10r) | | 2ln(x-4)=8 | | Ln(x+1)-ln(x-1)2=0 |

Equations solver categories