h(h+6)=2(3h+27)

Simple and best practice solution for h(h+6)=2(3h+27) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for h(h+6)=2(3h+27) equation:



h(h+6)=2(3h+27)
We move all terms to the left:
h(h+6)-(2(3h+27))=0
We multiply parentheses
h^2+6h-(2(3h+27))=0
We calculate terms in parentheses: -(2(3h+27)), so:
2(3h+27)
We multiply parentheses
6h+54
Back to the equation:
-(6h+54)
We get rid of parentheses
h^2+6h-6h-54=0
We add all the numbers together, and all the variables
h^2-54=0
a = 1; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·1·(-54)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*1}=\frac{0-6\sqrt{6}}{2} =-\frac{6\sqrt{6}}{2} =-3\sqrt{6} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*1}=\frac{0+6\sqrt{6}}{2} =\frac{6\sqrt{6}}{2} =3\sqrt{6} $

See similar equations:

| 13 = 133b | | m-15=40 | | 3(x–3)=5(1.5+x) | | y+5.3=9.26 | | 75+65=x+51 | | 2(a–1)=3(a+1) | | 6x-15+14x+11=180 | | u-9.21=5.97 | | 7(2p+3)–8=14p–13 | | 6x-15=14x+11 | | 75+65+x+51=180 | | 5(2k+10)=40 | | y-9.3=6.78 | | 6x+4+2x+8=180 | | 13+m=-4m+3 | | X+32+2x+1=180 | | 2x-1+x+4+7+7=180 | | .07x+x=52.43 | | 5y-7=-102 | | X+32=2x+1 | | 5x+14=7x+10 | | 33x+3+42=47x+3 | | 8w+5=4(2+1) | | 7+10x=10x+7 | | 33x+3+4=47x+3 | | 4.45+2m=8.45 | | 15-6x=10x+45 | | 2x+21+74=x+95 | | -3j+5=-4 | | -3p/4=6 | | 9=2f-5- | | 5x-18/5+x/20=x/4-2 |

Equations solver categories