If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h(2)=8
We move all terms to the left:
h(2)-(8)=0
We add all the numbers together, and all the variables
h^2-8=0
a = 1; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·1·(-8)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*1}=\frac{0-4\sqrt{2}}{2} =-\frac{4\sqrt{2}}{2} =-2\sqrt{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*1}=\frac{0+4\sqrt{2}}{2} =\frac{4\sqrt{2}}{2} =2\sqrt{2} $
| N-8+5n=-8 | | −7y−12=4y+10 | | 0.3z+0.8=-0.1 | | P=72p-4= | | v/2=v/3-2 | | n/4+5=12 | | 4x-13=3-3x | | Y=10x+50=7 | | -5h+2(11-h)=-5 | | 2(3x-7)+4(3x+2)=6(5x+9)-54 | | 3x+-1(5x+-9)=7+-4(x+1) | | (1/3)k+(4/3)k=44/9+(3/2)k+2k | | 5x+20–x=4x+20–1 | | 8+(-2x)=14 | | 8+-2x=14 | | 1/3p=10 | | -3/2x=10 | | x+4-5x=6 | | 1/3k+4/3k=44/9+3/2k+2k | | 376+12+n=280+15+n | | 276+12+n=280+15+n | | 9/6y-11=-2 | | -1n+10=-8+8n | | (m-5)^2=-27 | | 8(x-)=-4(x-16) | | 7x+3x-8x-5=1 | | 14p+2p-14p=10 | | 8(x+25)=6(5x-12) | | –4m=–4m+7 | | 19+5=-3(5x-8) | | 8a=3a+22 | | -1/2(x+4)=32 |