If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g2+42g=0
We add all the numbers together, and all the variables
g^2+42g=0
a = 1; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·1·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*1}=\frac{-84}{2} =-42 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*1}=\frac{0}{2} =0 $
| 1-17+5r-13=1 | | 4(x+4)+x=40 | | -3(2y-6)=-30 | | x-0.15x=0.18 | | 8x+31=x=6 | | 6(4w+5)=-10 | | 4x+27=6x+3 | | 11 = h2− -9 | | 2y-4y+5=-5 | | 34(x+9)=34(2x-6) | | 3+4r=-17 | | -12(10y-2)+3=14 | | 3x+14=4x-1 | | 7x-7x-9=76-40 | | 7x+5x-8x+1=9 | | 122=5^x-3 | | 11/4+x=7 | | 4u+-7u−4=5 | | 3m2+44m=0 | | 1/3+x=30 | | 7=x+11/4 | | 11n+3-10+4n=38 | | -4w+16+2=6 | | y2− 2= 1 | | 2x+5=2+3 | | −3b−12=−7b | | -10(s+3)=-49 | | (y+11)^2=49 | | 3y−y+4=14 | | 3x(-4)+1=-2x(-5)+5x | | 2x÷7-3=2 | | -2(-7k+4)=9=-13 |