If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f=9/5f-32
We move all terms to the left:
f-(9/5f-32)=0
Domain of the equation: 5f-32)!=0We get rid of parentheses
f∈R
f-9/5f+32=0
We multiply all the terms by the denominator
f*5f+32*5f-9=0
Wy multiply elements
5f^2+160f-9=0
a = 5; b = 160; c = -9;
Δ = b2-4ac
Δ = 1602-4·5·(-9)
Δ = 25780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25780}=\sqrt{4*6445}=\sqrt{4}*\sqrt{6445}=2\sqrt{6445}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-2\sqrt{6445}}{2*5}=\frac{-160-2\sqrt{6445}}{10} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+2\sqrt{6445}}{2*5}=\frac{-160+2\sqrt{6445}}{10} $
| -35x+1=4 | | 3b+1.19=7.28 | | -5g-10=g+2 | | X²+15x=0 | | 5x-2(x+5=11 | | 2(x-6)=2x+5+7 | | 6x+4=3x+1= | | 10(x=4)=15x+9-12x | | d+9/4=8 | | t/3+10=12 | | 7+-3x=-5 | | 7x+5=-3x-2 | | 5f+2f=28 | | -2j+-7=13 | | 2(3x-5)=20-6x | | -(3x-5)=4(17+x) | | j3-2=2 | | 3(x-4+6=2(x-2)+5 | | -7.7d+3.68=-8.5d | | 2n-2+n=2n+4 | | t3+10=12 | | 2x+6-8=11 | | 2b−6=–2 | | 2(m+3)=-12 | | 10−2j=–j | | 2x+4(2)=8 | | 25y=15y+76 | | 2(m+3)=3m-16 | | X+18=16-16-4(x+7) | | 3/2(x+4/3)=-11/2 | | 3(x-4+6=2(x-2+5 | | -3-2g=-2g |