If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f(f-1)=40
We move all terms to the left:
f(f-1)-(40)=0
We multiply parentheses
f^2-1f-40=0
a = 1; b = -1; c = -40;
Δ = b2-4ac
Δ = -12-4·1·(-40)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{161}}{2*1}=\frac{1-\sqrt{161}}{2} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{161}}{2*1}=\frac{1+\sqrt{161}}{2} $
| -10(s+5)=-22 | | 72+(x+15)=180 | | 3+7.x=49 | | x=67-10.05 | | 5/9(s°F-32)=°C | | (4^x+2)(8^x-5)=16 | | $x-87=135$ | | x=67-(15/100*67) | | 5x^2-28x+14=0 | | (-9x+5)^1/2=(3+4x)^1/2 | | 8x^2=x | | 5x+5=(7x-6)/2 | | 202-40x=0 | | 6(q-8)=42 | | 1/3(3-9x)=11 | | x2.4+2x1.2-8=0 | | A=1xB | | 2^(2x^2+4x+6)+2^(x^2+2x+2)-18=0 | | 2x2+24x+70=0 | | 5/a+9=49 | | 2=8−3f | | (x-10)(x-3)=120 | | 5,7-x=-3,3 | | (8x-8)/3=2x-1 | | (2y+5)÷(y+4)=1 | | x2-2014x+2014=0 | | x2-2x+2014=0 | | 7(3w+6)=-9 | | 5x+8=12+6 | | x−22=2(x−10) | | 20-(3x=9)-2=-(-11x+1) | | 50=-3t=-7 |