If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f(9f-4)=0
We multiply parentheses
9f^2-4f=0
a = 9; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·9·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*9}=\frac{0}{18} =0 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*9}=\frac{8}{18} =4/9 $
| 4(x+3)=3(x+12) | | 3x−9+15x=18x-9 | | (v-3)(v+6)=0 | | 3x+14=7x-14 | | -4x+3=75+5x | | c(c-3)=0 | | (w+1)(w-5)=0 | | 4x2−5x−6=0 | | 24x^2-82x+48=0 | | 5x-6=3+6x | | (s-4)(s+9)=0 | | (q-6)(q+4)=0 | | 3x10=5(x+12) | | (r-5)(r+6)=0 | | (r-5)(r+6)=6 | | .50p+3=8 | | 20=3×w | | 4+2p=10(1/5p-2) | | w+4=24 | | 5a-10=4a-+8 | | -15+2x=5(-3-5x | | q^2-40q+820=0 | | w−w+w+3w−w=15 | | 2x+2x+6+4=-14 | | x+8x-9=18 | | 2(3x+1)+4=36 | | 8x-23=8x+191 | | 62-y=292 | | 4(2y-7)=44 | | 2x+4(x-9)=114 | | X+2x+3-x=2x1 | | x=39+2/3 |