If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f(7f+3)=0
We multiply parentheses
7f^2+3f=0
a = 7; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·7·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*7}=\frac{-6}{14} =-3/7 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*7}=\frac{0}{14} =0 $
| 21(2-x)+12x=43 | | n-4=6+10 | | 7x-8+5x-4=180 | | 2(x+8)-6=10+2x | | |2x-12|=-4x | | -7-3n=-11+1-3n+3 | | 3/5b+8=4 | | 3/2x=2/3x+9 | | -11/5=-2+n | | 5×-3y=9 | | 6(b-4÷6)=b÷2 | | 3(1-y)=4(2-y) | | 5/4×p=-35 | | 180-7x+4=19x+18 | | m-13=42 | | 0.8=x/250 | | 18x^2+6x+1=0 | | 27=-3(x+12) | | 5x+3x-1=46 | | 8m-8m=4m+4+3m-4 | | x/4+8=-3 | | X÷5-7=x÷3-5 | | 19x-2+85=7x+9 | | 14x+16x=90 | | -x^2-2x=13 | | w+2/5=7/15 | | 34+2t=36 | | 7x+9+85=19x-2 | | 2x^2-4x+4=58 | | -7x+15=7x-4+5x | | 5x+21=2x+90 | | 7x+9+19x-2=180 |