If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f(2)=4+1
We move all terms to the left:
f(2)-(4+1)=0
We add all the numbers together, and all the variables
f2-5=0
We add all the numbers together, and all the variables
f^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| 9x-4x-3=4x+3+12 | | f(1)=4+1 | | 5x+25+6x+5+130-3x=180 | | 18g-14=12-20g | | 4+x+72=180 | | (4x-1)^2-16x+4=0 | | f(-1)=4+1 | | 9x7=35 | | (4x-1)(4x-1)-16x+4=0 | | M=1.2v | | f(-5)=4+1 | | 42=34+q. | | (4x-1)2-16x+4=0 | | 4n3n=0 | | x*3=180 | | h(4)=3-2 | | x*3.25=180 | | 5(x-2)/3=-x+x | | h(2)=3-2 | | –(p+17)=4p–2 | | 8x+23+15x-56+42=180 | | 2z/9-1=0 | | 35k=6 | | h(1)=3-2 | | -2f+3=-11f-24 | | 11-u=9/4 | | h(-4)=3-2 | | 5y+14=-36 | | 3f-10=14 | | 184=k8 | | h(-5)=3-2 | | 5(2x-4)+2x=7x+5 |