If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f(2)=36
We move all terms to the left:
f(2)-(36)=0
We add all the numbers together, and all the variables
f^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| 3(2n+3)-(n-4)=33 | | 2x+5=2(x−1) | | f(-1)=0.17 | | f(-1)=0.1666 | | 3x+80=360° | | -3/4n=-2/ | | 10-4|4-5k|=-26 | | -3(4-x)=2(x-5) | | X+2(x-2)3x=35 | | -3+5=-7x-4 | | 7.5x-2.5x=7x-10 | | 4=-0.8y | | 1/4(6x-2)=x-2 | | 14(6x−2)=x−2 | | 3n2+803n-45456=0 | | -8+12p+36+6p=18(2p+12)+10 | | 219-u=156 | | 281=162-v | | 2x+4x+150°=180° | | -x+255=113 | | X2-48x+360=0 | | -y+54=205 | | 4+3(2y-1)=y-9 | | y²=2.25 | | 7(a-1)=6 | | 10-5x=-14+x | | 28=2(4f+2 | | 25n+15n2=6500 | | 7i−7=63 | | 5m+9=54m= | | 6y+6=54 | | x+25/5=86/6 |