If it's not what You are looking for type in the equation solver your own equation and let us solve it.
e2=99
We move all terms to the left:
e2-(99)=0
We add all the numbers together, and all the variables
e^2-99=0
a = 1; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·1·(-99)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*1}=\frac{0-6\sqrt{11}}{2} =-\frac{6\sqrt{11}}{2} =-3\sqrt{11} $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*1}=\frac{0+6\sqrt{11}}{2} =\frac{6\sqrt{11}}{2} =3\sqrt{11} $
| 5-1/2(b-6)=4+10 | | 5x+134=179 | | d2=35 | | 1/5x+1/4=2(4/5x-1) | | c2=70 | | x^2−1.5x+0.26=0 | | b2=48 | | 4x+80=8x+16 | | a2=26 | | x/12=3=7 | | e2=144 | | d2=24 | | c2=17 | | b2=5 | | a2=14 | | x/7=-29+40 | | e2=121 | | d2=81 | | c2=64 | | b2=169 | | x=12+8x/13 | | -2t^2-20t-30=0 | | x-9=-2+3 | | 11^-3y=2 | | x/3+x/2=7/9 | | 3x-26=-2x+54 | | 3/4p=1/5 | | x^2-2x+384=0 | | 10=(3^x+5)-2 | | -7b−7=-6b | | -6v+1=1−6v | | -6h+10h=4h |