Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(((8*e^x)/2)*e^x)'The calculation above is a derivative of the function f (x)
((8*e^x)/2)'*e^x+((8*e^x)/2)*(e^x)'
(((8*e^x)'*2-(8*e^x*(2)'))/(2^2))*e^x+((8*e^x)/2)*(e^x)'
((((8)'*e^x+8*(e^x)')*2-(8*e^x*(2)'))/(2^2))*e^x+((8*e^x)/2)*(e^x)'
(((0*e^x+8*(e^x)')*2-(8*e^x*(2)'))/(2^2))*e^x+((8*e^x)/2)*(e^x)'
(((0*e^x+8*ln(e)*e^x)*2-(8*e^x*(2)'))/(2^2))*e^x+((8*e^x)/2)*(e^x)'
(((0*e^x+8*e^x)*2-(8*e^x*(2)'))/(2^2))*e^x+((8*e^x)/2)*(e^x)'
((8*e^x*2-(8*e^x*(2)'))/(2^2))*e^x+((8*e^x)/2)*(e^x)'
((8*e^x*2-(8*e^x*0))/(2^2))*e^x+((8*e^x)/2)*(e^x)'
4*e^x*e^x+((8*e^x)/2)*(e^x)'
4*e^x*e^x+((8*e^x)/2)*ln(e)*e^x
4*e^x*e^x+((8*e^x)/2)*e^x
8*e^(2*x)
| Derivative of 7c | | Derivative of (1-cos(x))/(1-cos(x)) | | Derivative of 10e^-3x | | Derivative of 2e^(-2x^3) | | Derivative of 2e^-2x^3 | | Derivative of 50-x^2 | | Derivative of e^k | | Derivative of 2cos(x^2)-1 | | Derivative of 5e^2.5 | | Derivative of e^3.5 | | Derivative of x/(2i) | | Derivative of 5sin(x^2)x | | Derivative of 1-tan(2x) | | Derivative of sin(24x)/24 | | Derivative of -5^-2x | | Derivative of ln(x)/(x^3) | | Derivative of 28(7x-2)^3 | | Derivative of (7x-2)^3 | | Derivative of 6/(ln(x)) | | Derivative of x^(7/2)*e^x | | Derivative of (8x)*ln(6x)-(8x) | | Derivative of 1000e^(0.05x) | | Derivative of 1000e^(0.05t) | | Derivative of ((x^3)/7)-9x | | Derivative of (x^3/7)-9x | | Derivative of x^3/7 | | Derivative of -8/x^4 | | Derivative of 6^1/2 | | Derivative of 8/x^-4 | | Derivative of 2/x^5 | | Derivative of 8/x^2 | | Derivative of x^2/52 |