Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(4*cos(3*x)-(13*sin(4*x)))'The calculation above is a derivative of the function f (x)
(4*cos(3*x))'+(-(13*sin(4*x)))'
(4)'*cos(3*x)+4*(cos(3*x))'+(-(13*sin(4*x)))'
0*cos(3*x)+4*(cos(3*x))'+(-(13*sin(4*x)))'
0*cos(3*x)+4*-sin(3*x)*(3*x)'+(-(13*sin(4*x)))'
0*cos(3*x)+4*-sin(3*x)*((3)'*x+3*(x)')+(-(13*sin(4*x)))'
0*cos(3*x)+4*-sin(3*x)*(0*x+3*(x)')+(-(13*sin(4*x)))'
0*cos(3*x)+4*-sin(3*x)*(0*x+3*1)+(-(13*sin(4*x)))'
0*cos(3*x)+4*3*(-sin(3*x))+(-(13*sin(4*x)))'
0*cos(3*x)+4*-3*sin(3*x)+(-(13*sin(4*x)))'
(13)'*sin(4*x)-12*sin(3*x)+13*(sin(4*x))'
0*sin(4*x)-12*sin(3*x)+13*(sin(4*x))'
0*sin(4*x)-12*sin(3*x)+13*cos(4*x)*(4*x)'
0*sin(4*x)-12*sin(3*x)+13*cos(4*x)*((4)'*x+4*(x)')
0*sin(4*x)-12*sin(3*x)+13*cos(4*x)*(0*x+4*(x)')
0*sin(4*x)-12*sin(3*x)+13*cos(4*x)*(0*x+4*1)
0*sin(4*x)-12*sin(3*x)+13*4*cos(4*x)
-12*sin(3*x)-(52*cos(4*x))
| Derivative of ln(sin(2*x)) | | Derivative of sin(5x)^ln(x) | | Derivative of (1-(x/7))^-7 | | Derivative of (8*x^2*(x^21)-(2*(x^2-1)^2))/((x^2-1)^4) | | Derivative of (8*x^2*(x^2-1)-(2*(x^2-1)^2))/((x^2-1)^4) | | Derivative of 4x^(-1/3) | | Derivative of (x^2)-1/2cos(x) | | Derivative of (12x-36)/(x2-6x-7)^2 | | Derivative of sin((x^2)/2) | | Derivative of 160*ln(x/635) | | Derivative of ln(e^15) | | Derivative of ln((e^3)^3) | | Derivative of ln(e^3)^3 | | Derivative of x^2(cos(4x)) | | Derivative of (ln(x))/sin(x) | | Derivative of 2t^(-3/5) | | Derivative of cos((3x)^2) | | Derivative of 2x-1200 | | Derivative of sin(pi/180*x) | | Derivative of (sin(x)/x)-0.033 | | Derivative of ln(x^5)/6x | | Derivative of 1/5(100-y) | | Derivative of tan(6x)^sin(5x) | | Derivative of 4sin(t)cos(t) | | Derivative of 12sin(0,5x) | | Derivative of x^(7/3)-7*x^(1/3) | | Derivative of (x^3)-x | | Derivative of (3x^2)-1 | | Derivative of x^-0.09 | | Derivative of x^0.09 | | Derivative of 6ln(x^(1/3)) | | Derivative of 6ln(x^1/3) |