Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(3*cos((pi*x)/2))'The calculation above is a derivative of the function f (x)
(3)'*cos((pi*x)/2)+3*(cos((pi*x)/2))'
0*cos((pi*x)/2)+3*(cos((pi*x)/2))'
0*cos((pi*x)/2)+3*-sin((pi*x)/2)*((pi*x)/2)'
0*cos((pi*x)/2)+3*-sin((pi*x)/2)*(((pi*x)'*2-(pi*x*(2)'))/(2^2))
0*cos((pi*x)/2)+3*-sin((pi*x)/2)*((((pi)'*x+pi*(x)')*2-(pi*x*(2)'))/(2^2))
0*cos((pi*x)/2)+3*-sin((pi*x)/2)*(((0*x+pi*(x)')*2-(pi*x*(2)'))/(2^2))
0*cos((pi*x)/2)+3*-sin((pi*x)/2)*(((0*x+pi*1)*2-(pi*x*(2)'))/(2^2))
0*cos((pi*x)/2)+3*-sin((pi*x)/2)*((pi*2-(pi*x*(2)'))/(2^2))
0*cos((pi*x)/2)+3*-sin((pi*x)/2)*((pi*2-(pi*x*0))/(2^2))
0*cos((pi*x)/2)+3*(pi/2)*(-sin((pi*x)/2))
0*cos((pi*x)/2)+3*((-(pi*sin((pi*x)/2)))/2)
(-3*pi*sin((pi*x)/2))/2
| Derivative of 1000/x^0.5-1 | | Derivative of 1000/x^1/2-1 | | Derivative of t^2/18 | | Derivative of (6-2x)^14 | | Derivative of tan(x/8) | | Derivative of 8e^(-6x) | | Derivative of tan(18/x) | | Derivative of ln(-2017x) | | Derivative of Y*sin(2y) | | Derivative of 2(1-e^-0.25t) | | Derivative of (3)cos(5x) | | Derivative of 2tan(45) | | Derivative of 500x^(-1/2) | | Derivative of 500x^(-3/2) | | Derivative of 4^(x^2) | | Derivative of 4^(x2) | | Derivative of 2cos(x)-2x-8 | | Derivative of 5*8 | | Derivative of -4sin(2*x) | | Derivative of -2sin(2y-x) | | Derivative of sin(3x-1)^2 | | Derivative of -12e^-12x | | Derivative of (x^6-1)^3 | | Derivative of 2sin(-5x) | | Derivative of (x-e^-x)^2 | | Derivative of -0.01 | | Derivative of (sin(x))^13 | | Derivative of (3.5)^x | | Derivative of 4cos(4t) | | Derivative of 1/(5-3x) | | Derivative of (e^x)^8 | | Derivative of 7e^2^x |