If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=68
We move all terms to the left:
d2-(68)=0
We add all the numbers together, and all the variables
d^2-68=0
a = 1; b = 0; c = -68;
Δ = b2-4ac
Δ = 02-4·1·(-68)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{17}}{2*1}=\frac{0-4\sqrt{17}}{2} =-\frac{4\sqrt{17}}{2} =-2\sqrt{17} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{17}}{2*1}=\frac{0+4\sqrt{17}}{2} =\frac{4\sqrt{17}}{2} =2\sqrt{17} $
| u+715–8=–27 | | 6m+3=2m-4(/)2 | | 8x-5x-6=-18 | | 46x+56=-24x+196 | | F(3)=-4x2-2x+5 | | 3s+4=7s-6 | | (3x+6)-(9x-8)=142 | | 40=6-2n | | -8+5x=6x-19 | | 4(2-6r)=152 | | 2u-54+2u+26=180 | | 5+4(x+2)=23 | | x(3x^2-4x-4=) | | 1-3(h-3)=28 | | 7b+21=14b+6 | | 2u-54=2u+26 | | -3=(1-10x) | | -18=b-20 | | –4=d–3+ –3 | | 8(a+6)=–16 | | 7a+13=3a-3 | | 80xx=36 | | 7×(6-2a)=4×(3a+4) | | 13x-20=0 | | 0.5(x−12)=4 | | r/18+-419=-446 | | 2(10-7)+9g=g(2²+5)+36 | | 80•x=36 | | (x-12)+(x+100)=180 | | -8(7k+6)-3=-275 | | 0=2(5x+1) | | 34x+4=14x−9 |