d2=64/25

Simple and best practice solution for d2=64/25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for d2=64/25 equation:



d2=64/25
We move all terms to the left:
d2-(64/25)=0
We add all the numbers together, and all the variables
d2-(+64/25)=0
We add all the numbers together, and all the variables
d^2-(+64/25)=0
We get rid of parentheses
d^2-64/25=0
We multiply all the terms by the denominator
d^2*25-64=0
Wy multiply elements
25d^2-64=0
a = 25; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·25·(-64)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6400}=80$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*25}=\frac{-80}{50} =-1+3/5 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*25}=\frac{80}{50} =1+3/5 $

See similar equations:

| w2=81/49 | | z2=36 | | V(t)=80(0.4)^4 | | c2=49/64 | | 6x=7x+28 | | w2=16/25 | | 130+2x+150=180 | | 0.25x+5=7-0.3x | | .60x=55+.40x | | -3a-5=4 | | 271.25=225+.65x | | -2(2x-3)=(3x+1)+10 | | -1+(2x/5)=3 | | 1/5xx10+7x10=3/10x10 | | 1/5x+7=3/10)x10 | | (1/5x+7=3/10)x10 | | 1/5x+7=3/10x10 | | 4x-7x=2(3x+8) | | 10x+3+10x=13-3+7x | | x+7=2(X+3) | | 9x^2-62x+85=0 | | 5=(2+x)/3 | | 2y^2-4y+24=0 | | -8x+3-2x=6x=3-4x | | 5n/10=2 | | 2r^2-22=-11 | | -8x^2-18=0 | | (5)=(2+x)/3 | | 23x=-7 | | 3p-4=2p+3 | | -13x-5=-6x^2 | | 4/5=8/(x+3) |

Equations solver categories