If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=3d=28
We move all terms to the left:
d2-(3d)=0
We add all the numbers together, and all the variables
d^2-3d=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $
| -53=15x+82 | | 20=14-t | | -118=4(2-6x)+3x | | -5/8=-9/4x+8/3x | | 13+x-8=75 | | -1.6f+15.68=-18.8f-18.72 | | 2p+5p-7p+3p=12 | | 7x+5-3x=11+x | | -4(u-5)+28=4(3-u) | | =2m | | x+3.12=4.7 | | 6n^2-10n=-4 | | -48=4v+5(3v-2) | | 185(7^x)=4(9^(2x)) | | -48=-4v+5(3v-2) | | 8j-6j-2j+2j+2j-j=11 | | 19c-18c=15 | | 14x=1689 | | k5=2 | | -8c2=-800 | | 92=3(4x+1)-7 | | 20a-16a=12 | | 15m-20-13=12m+18 | | 92=3(4x+)-7 | | 1.2(x-8)-0.4=20 | | 7x+5-3x=11-x | | 185(7^x)=4(9^2x) | | x2+6x+1=13+1 | | 65=5+x. | | 8j−6j−2j+2j−j=11 | | (x-9)(x+1)/(x-2)=0 | | -11.5u-10.51=11.2-10.4u-7.63 |