If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=23
We move all terms to the left:
d2-(23)=0
We add all the numbers together, and all the variables
d^2-23=0
a = 1; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·1·(-23)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{23}}{2*1}=\frac{0-2\sqrt{23}}{2} =-\frac{2\sqrt{23}}{2} =-\sqrt{23} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{23}}{2*1}=\frac{0+2\sqrt{23}}{2} =\frac{2\sqrt{23}}{2} =\sqrt{23} $
| -8x=9+5x | | Y=x³-x² | | x+2=(2x-2)/3 | | -4n(7)=-11 | | 9t-3/9=5t+5/3 | | m/5+9-11=0 | | -.84x=1 | | x+24=64 | | z=(-9+2)2 | | 2(x-5)+3x=6x+10 | | 16=r/4 | | 13+23=2x+10 | | 180-x=2(90-x)+47 | | 1/8h=5/8 | | 4(2x+9)=-19+7 | | 36+6n=6(n+1)+6n | | x+35+25=180 | | (m)/(5)+9-(11)=0 | | -11x-7=-18 | | (2x+3)+51+x=180 | | 6=−6a+2) | | 7x-4=-1+13x+7 | | (2x+3)+51+x=18 | | x+11=4x-31 | | 2.5x-10=-25.5 | | 7(x+2)-6=2x+5(1+x) | | 0.2=x/0.05 | | -7x+16+3x=52 | | 3(v+4)-6v=39 | | b/2-2=-12 | | 6=5n-2(3+4n) | | v/11=8/17 |