If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=2
We move all terms to the left:
d2-(2)=0
We add all the numbers together, and all the variables
d^2-2=0
a = 1; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·1·(-2)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*1}=\frac{0-2\sqrt{2}}{2} =-\frac{2\sqrt{2}}{2} =-\sqrt{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*1}=\frac{0+2\sqrt{2}}{2} =\frac{2\sqrt{2}}{2} =\sqrt{2} $
| -12-4x=-4-2x | | (3x-50)=(2x-9) | | g-61=18 | | 90=(4x+22) | | 1/4+f=-7/2 | | 468+26x=17x | | (5/x)-2=(-11/8) | | 8.5x+4x=15-2.5x | | 3x+19=-5x | | 2/4k=24 | | 3(2x+1)=(x+13) | | -3(x+7)=-24 | | 1+5x=-9+6x | | 25+6x=21+4- | | 4m–1=2m+7 | | 4(5+x)=(2x+2)3 | | 4x+13=6x+5 | | -2u=-10/9 | | 2504^2=x(x+8) | | 6x+56=2x+20 | | x+2.7=10 | | (2x-18)=(3x-12) | | X^3-5x^2-3x=-15 | | 3(x+2)=(2x-1)4 | | t+-13/20=17/20 | | 37x+x-27=78 | | 6x^2+17x+6=1 | | 3z-1/2=10 | | 18x+5=21x-7 | | 6-3t^2=0 | | 4n^2=-7 | | 8x-10+10x=-3+32= |