If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2=13
We move all terms to the left:
d2-(13)=0
We add all the numbers together, and all the variables
d^2-13=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $
| 48x+2,472x-70=63(40x+21) | | t-66/7=4 | | 3-1x+2x=-6 | | –2x+9=13. | | 3x+5+(x-25)=180 | | 6-7n=-4(1-2n)-5 | | t-66÷7=4 | | -60/s=6 | | 9x=26.25 | | -11=c/6 | | (X+16)=(3x-22) | | 13y+2-2y=10y+4-y | | 2(b-83)=-42 | | 24-4t=-9 | | 44/t=-11 | | 2x-4=0.5x-1 | | -10+3t=-1 | | 9+2z=-11 | | 4x=74³x | | 3x+7=1x+0 | | 32+r=-1 | | r-8=7/8r+1/8r | | 12-14f=12f+6 | | 7/4b=1/16 | | t/5=0.8 | | 2x+12=54* | | 9x/56+1/10=-11/21 | | 8d+15=2d+5 | | 2s-19=-1 | | 7w=9w+4 | | .15t-500=14.5 | | 7+4y=30 |