If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2-8d+16=11
We move all terms to the left:
d2-8d+16-(11)=0
We add all the numbers together, and all the variables
d^2-8d+5=0
a = 1; b = -8; c = +5;
Δ = b2-4ac
Δ = -82-4·1·5
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{11}}{2*1}=\frac{8-2\sqrt{11}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{11}}{2*1}=\frac{8+2\sqrt{11}}{2} $
| 7f+6=62 | | -79-2x=95-8x | | J*J-6j+9=0 | | (x+7)3x-12=0 | | 7x-41=x+67 | | j2–6j+9=0 | | 4h-3=5h | | 11(y+2)=88 | | 31z=50 | | F(x)=10^x | | -4v+5=9v-8 | | 1.4x+2=18 | | 8p=17-9=8.P=8/8.P=1/1 | | 8x=4(4x-3)=4(6x=4)-4 | | 11x-53=8x+31 | | r-5+2r=2r-6 | | 1x=61 | | 24x^2-22x+5=0 | | 56÷x+9=16 | | 6÷x+9=16 | | y+44=2y+12 | | X2-x+8=0 | | 3x+(x+8)=0 | | 7+3s=-s-9 | | 17a+a=-18 | | 1,250=2(3.14)r | | 5e=3e=-36 | | r-11/13=-7 | | 4(2x+8)=-34+50 | | 2z+22=4z | | 4b-9=3b+15 | | x+35=150 |