If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d2-2=9
We move all terms to the left:
d2-2-(9)=0
We add all the numbers together, and all the variables
d^2-11=0
a = 1; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1·(-11)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*1}=\frac{0-2\sqrt{11}}{2} =-\frac{2\sqrt{11}}{2} =-\sqrt{11} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*1}=\frac{0+2\sqrt{11}}{2} =\frac{2\sqrt{11}}{2} =\sqrt{11} $
| 7u-56=42 | | 3n+6+n=5+2n-7 | | 5a+9=-31 | | 2y+9=3y-25 | | 6q-56=30 | | a+9-9=-62/5-9 | | (7-u)(4u-6)=0 | | 2(3y+5)=34 | | m/5-1=2 | | 7p-p=72 | | 5x+8=−2 | | -11=6p-5p | | 4x+7=5x+22 | | -2a+14=30 | | n3=9 | | 10=2d-4 | | 5x-5=7x+11 | | 4x2-11-x=0 | | x²+4x=60 | | (2x-1)^2=x+10 | | 3x2-4x+3=0 | | 5^(2x+1)=6.5^(x)-1 | | 1/2k=4/3k+1 | | -2(4=3y)=-2(4+y) | | 5a+6=7a-2 | | 1/9x^2-1/4x-6=0 | | 1/6x^2-1/4x-6=0 | | -2,5s+16=1,5s | | x(1/9x-1/4)=6 | | 1/9x^2-1/4x=6 | | t-3/19=7 | | 13x=20+9x |