If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d(d-9)=0
We multiply parentheses
d^2-9d=0
a = 1; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*1}=\frac{0}{2} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*1}=\frac{18}{2} =9 $
| -4(9x-2)=-28 | | 3x-7=8x+23. | | 35/28=n/12n= | | 3-10x-1=2x-5-5x-15 | | m+49=455 | | 3x+-1=6x+14 | | 16=1/2x=7 | | h(8h-3)=0 | | x+2x+30+3x+30=180 | | -24+(-1/8p)=3/8p | | d+408=928 | | 957=p+366 | | -3(2x-4=30 | | -4=-2(x-8) | | Y-5+5=3y | | 10−2x=(−4x) | | 3=18+3x | | x^2−12x−10=0 | | 10−2x=−4x | | -22+5x=23+2x | | x+400=2(2x-400) | | 12x-20+2=6x | | x+3x+x+x=x+10 | | 200=20v | | 1/6=x/80 | | (1/5)x-40=2x-4 | | 12x-1/5=-18 | | z+258=559 | | 4^x=139.75 | | -2(4x+3)=-46 | | 12+7x-2+4x=30+x-10 | | 306=q=670= |