cos(4*x)+sin(6*x)+cos(2*x)=0

Simple and best practice solution for cos(4*x)+sin(6*x)+cos(2*x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for cos(4*x)+sin(6*x)+cos(2*x)=0 equation:


Simplifying
cos(4x) + sin(6x) + cos(2x) = 0

Remove parenthesis around (4x)
cos * 4x + sin(6x) + cos(2x) = 0

Reorder the terms for easier multiplication:
4cos * x + sin(6x) + cos(2x) = 0

Multiply cos * x
4cosx + sin(6x) + cos(2x) = 0

Remove parenthesis around (6x)
4cosx + ins * 6x + cos(2x) = 0

Reorder the terms for easier multiplication:
4cosx + 6ins * x + cos(2x) = 0

Multiply ins * x
4cosx + 6insx + cos(2x) = 0

Remove parenthesis around (2x)
4cosx + 6insx + cos * 2x = 0

Reorder the terms for easier multiplication:
4cosx + 6insx + 2cos * x = 0

Multiply cos * x
4cosx + 6insx + 2cosx = 0

Reorder the terms:
4cosx + 2cosx + 6insx = 0

Combine like terms: 4cosx + 2cosx = 6cosx
6cosx + 6insx = 0

Solving
6cosx + 6insx = 0

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '-6insx' to each side of the equation.
6cosx + 6insx + -6insx = 0 + -6insx

Combine like terms: 6insx + -6insx = 0
6cosx + 0 = 0 + -6insx
6cosx = 0 + -6insx
Remove the zero:
6cosx = -6insx

Divide each side by '6osx'.
c = -1ino-1

Simplifying
c = -1ino-1

See similar equations:

| 23-3a=2 | | -16x+18=-6 | | -x-6=3x+14 | | x+23=3x+5 | | 5x+44=x+12 | | 6x+46=2x+22 | | 5x+46=x+18 | | 5x-9=x+27 | | x+42=5x+14 | | 7x-29=3x+3 | | -2x-3=x+18 | | -2x-4=x+17 | | 21=3/7y | | 7x-10=3x+18 | | 7x+20=3x+8 | | 7x+26=3x+6 | | 7/3w-1/12=-23/4 | | x/9-2x/7 | | -3x-3=x+5 | | 6x+52=2x+16 | | -1-11=2x+7 | | (5-u)(3u+8)=0 | | -2x+14=2x+6 | | x+31=4x+13 | | -x+23=x+9 | | 30/5-m/5 | | (x+y)=99 | | x-12=4x+9 | | 6/1-m/5 | | 12Q-Q^2=0 | | C=Q^3-12Q^2+60Q | | (-1q^2+6q)-(48q+30)= |

Equations solver categories