c2=169144

Simple and best practice solution for c2=169144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c2=169144 equation:



c2=169144
We move all terms to the left:
c2-(169144)=0
We add all the numbers together, and all the variables
c^2-169144=0
a = 1; b = 0; c = -169144;
Δ = b2-4ac
Δ = 02-4·1·(-169144)
Δ = 676576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{676576}=\sqrt{16*42286}=\sqrt{16}*\sqrt{42286}=4\sqrt{42286}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42286}}{2*1}=\frac{0-4\sqrt{42286}}{2} =-\frac{4\sqrt{42286}}{2} =-2\sqrt{42286} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42286}}{2*1}=\frac{0+4\sqrt{42286}}{2} =\frac{4\sqrt{42286}}{2} =2\sqrt{42286} $

See similar equations:

| (8x-5)=(7x+6) | | 12j+3j-10j+3=8 | | 2y/3=7/12 | | t/2+14=17 | | 156/n=26 | | x^2+6x18=0 | | 6j-9=6j+3j+9 | | ((5x+2)/3)-((2x-3)/2)=5 | | 17z-17z+3z=12 | | ((5x+2)/3)-(2x-3)/2=5 | | (x^2-2)^2+(x^2-2)=0 | | x+27=32 | | C(x)=3(x)+4501 | | -38=-8y(6(y-3) | | (5x+2)/3-(2x-3)/2=5 | | 12m-7=2m | | 15.5x=60+10.5x | | 5m+m+4m-3m=14 | | C(x)=3x+4,501 | | 12.5=x/4 | | 6j−9=6j+3j+9 | | 8x-11=4x+13 | | b2=12116 | | 6k+312=180 | | 16b-16b+3b+3b-4b=10 | | 4x+5=x+26= | | 12m-2=2m | | 9b=10+7b | | 5x-10=2-5 | | 14-3v=5 | | 2k+k+3k=6 | | 5^(2x)=20 |

Equations solver categories