If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2=10
We move all terms to the left:
c2-(10)=0
We add all the numbers together, and all the variables
c^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 3(x-1)=-6x+24 | | –9(u−89)=–99 | | -x/6-11=7 | | 58+58+6n+4=180 | | 5=q/6 | | -5=2w+9+-7 | | -11=n/2-9 | | 19(x-1)=78 | | y=24-3(1) | | -4(2r-5)=-20 | | (16+2x)-4=48 | | 3x+5+8x=x-5 | | 3.4w-5=12 | | 48=-4v | | -5(3w-12)=-15 | | a2=15 | | 16=n+13 | | |3b|-9=15 | | 6/5=3z | | -27=-9-3n | | 12x-42-6x=120 | | 4.22.5a=9.2 | | 8a+4+3a=2a-14 | | 25=5b+10 | | 26=10+8r | | 7-3x+2(3x-4)=2 | | 6x+128=180 | | x/4+3/5=x/2 | | 5(4y-6)=(13y+7) | | 0=-18x^2+18x+36 | | 3(a–5)–2(2a+1)=0 | | 22=-7k-6 |