If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c2-5c=3
We move all terms to the left:
c2-5c-(3)=0
We add all the numbers together, and all the variables
c^2-5c-3=0
a = 1; b = -5; c = -3;
Δ = b2-4ac
Δ = -52-4·1·(-3)
Δ = 37
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{37}}{2*1}=\frac{5-\sqrt{37}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{37}}{2*1}=\frac{5+\sqrt{37}}{2} $
| 8+8(-5d+19)=-20d | | -5x-3=-14-6x | | (x-6)/4=7 | | 5x+9=16-2x | | y=3+-1y | | 2x+4/5=10 | | -10-2h=3h | | 2p-32=p+35 | | 7p-9=-103 | | -3(1/4)=1/3x-2(3/4) | | 5x−12.96=4x+12.04 | | 7-x+3=9x+1- | | 6y-30=125 | | 3x+4x+9=-6 | | |-6p|=54 | | 5x−12.96=4x+12.04 | | 7=2k-5 | | -7k4k=8-2k-8k | | 2(-16c-7)-5c=4(c+17) | | 127+49+x=360 | | 19x+10=12x+20 | | 9y-9=108 | | 12x+6=−4 | | 6y-y+10=15-7y-5 | | 19+4x=3x-58 | | 12x+6 =−4 | | 13=12÷n | | 12x+35=5 | | 9(j+4)=-20+2j | | 830=30+5x | | b2+26=1 | | 2/5-5x+2x=-1/5 |