c(2)=25(2)+50

Simple and best practice solution for c(2)=25(2)+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for c(2)=25(2)+50 equation:



c(2)=25(2)+50
We move all terms to the left:
c(2)-(25(2)+50)=0
We add all the numbers together, and all the variables
c2-302=0
We add all the numbers together, and all the variables
c^2-302=0
a = 1; b = 0; c = -302;
Δ = b2-4ac
Δ = 02-4·1·(-302)
Δ = 1208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1208}=\sqrt{4*302}=\sqrt{4}*\sqrt{302}=2\sqrt{302}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{302}}{2*1}=\frac{0-2\sqrt{302}}{2} =-\frac{2\sqrt{302}}{2} =-\sqrt{302} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{302}}{2*1}=\frac{0+2\sqrt{302}}{2} =\frac{2\sqrt{302}}{2} =\sqrt{302} $

See similar equations:

| x^2-4x-7=-2 | | 1.5x+4x=550 | | 2x+100=10x+110 | | X+4=14-x | | 18p+105=438 | | 4x-3+x=33 | | x+37/9=5 | | 253=2x^2+x | | x+34/9=5 | | 25=135+x | | 11(k-1)+3k=7(k-9)-3 | | y/6+3=-11 | | 3y-y=30 | | 8/15x-4/15=-1/3 | | 3(2x+1)-3=5x+4 | | -6r-2=2+6r | | 3x-4(1x+2)=-12 | | x-2.91=-5.78 | | x-3.44=-3.46 | | 3x-4(1x+2)=12 | | -11-3c/2=-15 | | (3x)+4x-24=180 | | m-3.5=-9.2 | | 16+8x=3x(4) | | 24y-2=12+2y | | -1/3(18r+6)=2+6 | | 2^3+10x=0 | | -14=5-8x/9 | | -1=11t-4 | | s^2+5.5s+2.5=0 | | x+3x+5=113 | | 4.44(x−7)=8.88 |

Equations solver categories