If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=900
We move all terms to the left:
b2-(900)=0
We add all the numbers together, and all the variables
b^2-900=0
a = 1; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·1·(-900)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*1}=\frac{-60}{2} =-30 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*1}=\frac{60}{2} =30 $
| 55=5(2a-1 | | 7u-93=6u-68 | | a+34=5a-70 | | 4b-50=2b | | 4s-27=s+63 | | 10w-3=3w+4 | | 9.02x+3.57(8x-5)=12.07x+0.5614 | | 4(k-3)-8=3k-(2k-1) | | v(11)=18500(0.90)^11 | | X3+4x=8 | | -12f+18=-11f+18-f | | 1001/5−104/5m=57 | | -7+4f=4f-7 | | 3-5q+14q=-14+9q | | 8u-1-17=-18+8u | | -10-5r=7-5r | | -9+m=m+10 | | -7h-5=-8h+4 | | -10k+4=4-10k | | 2s=10s-8s | | X-(x+420)=420 | | 25(3x)=60 | | -x=-342 | | -4x+2.9=-7x+4.7 | | 5/9(x+28)=25 | | 3y-2y=-9+20 | | 3b+5=9 | | 5(7-x)=55 | | 5(7-x)=55 | | 6m−3=39 | | 6m−3=39 | | r/6+89=96 |