b2=75

Simple and best practice solution for b2=75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b2=75 equation:



b2=75
We move all terms to the left:
b2-(75)=0
We add all the numbers together, and all the variables
b^2-75=0
a = 1; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·1·(-75)
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*1}=\frac{0-10\sqrt{3}}{2} =-\frac{10\sqrt{3}}{2} =-5\sqrt{3} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*1}=\frac{0+10\sqrt{3}}{2} =\frac{10\sqrt{3}}{2} =5\sqrt{3} $

See similar equations:

| 13+7x=-19 | | -4-v=-7 | | 4=d/20 | | -2+1/5x=6 | | -37=43-5x | | 3=3.3x​x= | | –9s+6=–8s | | –2=–x+83 | | (5a-10)+(3a+14)+(2a+16)=180 | | 2^-x+1=(-3/4)x+3 | | 6(r+5)=-3(r+5) | | 5*3x-4+11=12x | | 3=3.3x​ x= | | 6m=2(m-4) | | 7x+10=7x+7 | | 13+r=24 | | 3^(2x+3)-2.9^(x+1)=1/3 | | 3(3x-2)+7x=-42 | | p-4=-9+ | | 6/x=36/72 | | 5x+3=2x=x | | 2x(x-3)(4x-1)=0 | | 2x/14=-3 | | y/8-18=52 | | 3x-3=5^x-1 | | 2x(x-3)(4x-11)=0 | | |4x-7|=-19 | | 7x-2(-x+22)=-89 | | 45-x-4=20 | | (3x+5)°+2x°+90°=180° | | h+-2=4 | | 8n-2n+6=34 |

Equations solver categories