If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=3
We move all terms to the left:
b2-(3)=0
We add all the numbers together, and all the variables
b^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $
| (20*15+10c)-90=460 | | 10c+15=390 | | 3y(y+1)+3=5 | | (20*4+10c)-90=460 | | 4-(x+8)/3=16 | | 10x-3x+6=8 | | 15+6x-8=8x+4-2x | | 2x-82=38+8x | | 3(f+5)=27 | | 8z+1/5=9z+4/5 | | 3x31=2x-6 | | 7x+12x^=5 | | 3b-32=19b | | 4r+12=44 | | 4 5y=30 | | 3(6b-1)=33 | | 29x+1)/4=4x-3 | | 15=4x+43 | | 6y+13=59 | | c3=36 | | 3w+-5=10 | | 6(3-x)+(20-)=10+3(4x+2) | | 0.11(x+)=5,170 | | 6=3(4x-14) | | 0.60=0.05+0.10y | | -8x+5=5- | | 6+10=c | | 6+7x=19+2 | | -4v+2v=-12-4v | | 0.08(x+)=3,440 | | 10x+-10=-20 | | 56+63=2x+1 |