b2=12/116

Simple and best practice solution for b2=12/116 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b2=12/116 equation:



b2=12/116
We move all terms to the left:
b2-(12/116)=0
We add all the numbers together, and all the variables
b2-(+12/116)=0
We add all the numbers together, and all the variables
b^2-(+12/116)=0
We get rid of parentheses
b^2-12/116=0
We multiply all the terms by the denominator
b^2*116-12=0
Wy multiply elements
116b^2-12=0
a = 116; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·116·(-12)
Δ = 5568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5568}=\sqrt{64*87}=\sqrt{64}*\sqrt{87}=8\sqrt{87}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{87}}{2*116}=\frac{0-8\sqrt{87}}{232} =-\frac{8\sqrt{87}}{232} =-\frac{\sqrt{87}}{29} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{87}}{2*116}=\frac{0+8\sqrt{87}}{232} =\frac{8\sqrt{87}}{232} =\frac{\sqrt{87}}{29} $

See similar equations:

| 4(3+v)+37v=11v | | -1/40x+15=-1/15x+31 | | 2t-5=10-t | | 3z+14=2z+13 | | –6d=–42. | | -1/4(-16b-20)=-7b-16 | | -(7b-5)=-6(1+2b)+6 | | 5y-7=41+5y | | 62-u=27 | | 62-u=7 | | 87-n=49 | | 4/5y-7=13 | | 350t=T | | 9x=14=6x-13 | | 5/6y-1=14 | | 9x=14=6x-3 | | 9k=7-6k | | 2-2z=10 | | 7a+6-4a+3=8a-11+a | | -5(-2x-4)+5x-4=29 | | 347-m=25 | | 14x-3(2x-3)=7x+15 | | -3x+15=-8x+10 | | 5•k-70=60 | | 4+35x−9x2=0 | | 4+35x−9x^2=0 | | 35=x-5(x+1) | | y^2-12y=15 | | -7x-8=-18x+4 | | -7x−8=-10x+4 | | 3n-6+4n-11+n=39 | | R(x)=6x-0.005x |

Equations solver categories