If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2-8b+10=0
We add all the numbers together, and all the variables
b^2-8b+10=0
a = 1; b = -8; c = +10;
Δ = b2-4ac
Δ = -82-4·1·10
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{6}}{2*1}=\frac{8-2\sqrt{6}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{6}}{2*1}=\frac{8+2\sqrt{6}}{2} $
| 8(x+8)=-36 | | 7x²-25x+2=0 | | 21-2x=23 | | 3x+13=9x+25 | | -3(-5x=3)-4x+1=91 | | 4x+51=18x | | 3x-11=19-2x | | n+47=50 | | (3,4)(-9,-5)m=2 | | 5x+2x+3+4=x | | 2x+34=4(+5) | | 7/8k-1/5=1/2 | | (-x)-3x=(-9) | | -x-3x=(-9) | | 2x+29=7x-18 | | f/5-25=28 | | 3x+x+4x+2x=x | | (x-7)(x+3)=x(x+2)+5 | | 3y+4=5y-16 | | g/2+10=21 | | x+5=-3+25 | | n-108=14 | | 24+2x+8=2x+6 | | n-19=50 | | n-57=25 | | y/5-5=7 | | n-49=27 | | 4/7y-9=-5 | | 3(5a-4)=-4 | | n-35=26 | | 4a+a=5 | | 15x+9=5x+11 |