If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2-676b-57600=0
We add all the numbers together, and all the variables
b^2-676b-57600=0
a = 1; b = -676; c = -57600;
Δ = b2-4ac
Δ = -6762-4·1·(-57600)
Δ = 687376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{687376}=\sqrt{16*42961}=\sqrt{16}*\sqrt{42961}=4\sqrt{42961}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-676)-4\sqrt{42961}}{2*1}=\frac{676-4\sqrt{42961}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-676)+4\sqrt{42961}}{2*1}=\frac{676+4\sqrt{42961}}{2} $
| x*x-1=3x | | 3n²+603n-16200=0 | | 64-2x=68-3x | | 10x+0.5(x+6)+.25(2x)=4.85 | | 6x-12=24-5x | | 3x+4x+5=6x+5 | | y*y-20y+64=0 | | 80t+16t^2=96 | | y×y-20y+64=0 | | 80t+4.9t^2=96 | | ((20-y)×(20-y))+(y×y)-272=0 | | (20-y)×(20-y)+y×y-272=0 | | (20-y)(20-y)+y×y=272 | | (x*x)+x-10=425 | | (2y^2)-40y+128=0 | | (2Y*2y)-40y+128=0 | | 2Y^2-40y+128=0 | | Y^2-20y+64=0 | | 2x^2-10+17=0 | | 2x-10+17=0 | | 9x2=16 | | 4.9t^2=719.6t | | 4x=x2 | | ½*9.8t^2=350*2.056t | | ½9.8t^2=350*2.056t | | 6(n+7)=66 | | ½9.8t^2=350*2.056 | | ,0.025x+5.327=0.010x+5.318 | | 8^x+8^x+8^x+8^x=128 | | 12b^2-9b-6=0 | | 18=6u-4u | | √5x-6+5/2=4 |