b2+1=17

Simple and best practice solution for b2+1=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b2+1=17 equation:



b2+1=17
We move all terms to the left:
b2+1-(17)=0
We add all the numbers together, and all the variables
b^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 2/3+1/2x=3/5 | | 4(x+4)=9x+4-5x+12 | | -2(x-5)-4=6 | | -5+2x=-2x-13 | | -13(3-19f)+5=24f-34 | | 15+12=-3(4x-9) | | 7v-25=-3(v+5) | | 90=3g+g+2 | | -7/8y-1/2=3 | | 4(w-2)=7w-2 | | 6(3k+6)=-12+3(6k-1) | | 0n=4 | | 11x-7+3x+9=x | | x+3/3=1-x+1/2 | | (4*x^2)(2x*2)(18)=0 | | 3v-12=5(v-2) | | -18+1x=17 | | 4(3x+7)=-21+37 | | 4n+6=4n+24 | | 4x-7=79 | | 2x+5)+(8x-5)=90 | | 32+1x+-50=17 | | 2(w+4)=5w+2 | | 42=8x-2(x+9) | | 5-0.3k=15 | | 17=2(3x | | X+6/8=3/4+x-5/5 | | -2x2+3x-1=0 | | 3(n+3)-5(n-1)=12 | | 5x10 (11-10) = 10x+6 | | 4(2x+6)=-25+9 | | -9y-22=-4(y-7) |

Equations solver categories