If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2+1=101
We move all terms to the left:
b2+1-(101)=0
We add all the numbers together, and all the variables
b^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| C+5c+2c-7c=19 | | -0.16+-0.03x=-0.64 | | 5(2b+8)=50 | | v2-7=-6 | | 3(x-3)-4(x-5)=2 | | n2+1=1 | | 7/x-3=2/x-7 | | 3(2x+5)=6x+ | | x÷2+8=23 | | 16x+2x-13x-2x+4x=14 | | 22+5.50h=11+6.75h | | 2(x+5x)=80 | | 30x+4=30 | | 4(3p-7)=20 | | 11x-72=180 | | 8(r+6)–r+1= | | 3/4=m+1/4m= | | m2-10=-13 | | -6(2y+3)=18 | | x+40=9x+32 | | n2=n(-3)-20 | | 7/10=9/b+6 | | 4x+8.2=32.2 | | 7m=5m+2m | | −8(−8n−8)+8=328 | | 8b^2-10b-2=-4 | | 8x+84=0 | | -8=-3x-14 | | 15+0.15x=15 | | 122-66=7x | | -2d-10d+-10d=14 | | 2/5-1/3x=1/2 |