If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2+15b+56=0
We add all the numbers together, and all the variables
b^2+15b+56=0
a = 1; b = 15; c = +56;
Δ = b2-4ac
Δ = 152-4·1·56
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-1}{2*1}=\frac{-16}{2} =-8 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+1}{2*1}=\frac{-14}{2} =-7 $
| 9x-4=8x+8= | | 3(x+5)+42=8x13 | | -3a+5-2a=25 | | 3n2-n-14=-4 | | 9g-13=23 | | 6n-12n+3=9 | | Y=-3.5x+42 | | x-11=22-2x= | | 10y-6=3+10y-9 | | 3(x+2)+22=5x | | -6x-20=1-3x= | | x2=A | | x²+5=86* | | -23=3e-(-7) | | -2x-1=-9-x= | | 21*(1.05)^x=34 | | 20-9x=x+10x= | | 3*2^x=93 | | a/(-9)+10=11 | | -4y-7=-1-6y | | 7x=(x=20)° | | 105(0.15+x)=170 | | 2h+5=-6h+3h-10 | | 105(.15)+x=170105(.15)+x=170 | | 3t+8=-2+t | | 3x+6+3=2x+12 | | M4+8m2+16=0 | | 4(x+9)=100 | | -2(-2)+y=1 | | (2x+10)^2=4356 | | 17-4x-22=119 | | 9c=7+8c |