b+3/b+(2b-90)+90+(b+45)=540

Simple and best practice solution for b+3/b+(2b-90)+90+(b+45)=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+3/b+(2b-90)+90+(b+45)=540 equation:



b+3/b+(2b-90)+90+(b+45)=540
We move all terms to the left:
b+3/b+(2b-90)+90+(b+45)-(540)=0
Domain of the equation: b!=0
b∈R
We add all the numbers together, and all the variables
b+3/b+(2b-90)+(b+45)-450=0
We get rid of parentheses
b+3/b+2b+b-90+45-450=0
We multiply all the terms by the denominator
b*b+2b*b+b*b-90*b+45*b-450*b+3=0
We add all the numbers together, and all the variables
-495b+b*b+2b*b+b*b+3=0
Wy multiply elements
b^2+2b^2+b^2-495b+3=0
We add all the numbers together, and all the variables
4b^2-495b+3=0
a = 4; b = -495; c = +3;
Δ = b2-4ac
Δ = -4952-4·4·3
Δ = 244977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-495)-\sqrt{244977}}{2*4}=\frac{495-\sqrt{244977}}{8} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-495)+\sqrt{244977}}{2*4}=\frac{495+\sqrt{244977}}{8} $

See similar equations:

| -7r-3r+4r=6-2r | | 5x–6=x+18 | | 2x+10-x+50=90 | | 1/3x+11=22 | | 2w/9=-14 | | 2(x+4)=2(-8-x | | 3x=10x-38 | | 118=(11x+-7)(5x-3) | | -7u+2(u-7)=26 | | (9x-2)=(4x)2 | | 5x-6+4=7x-8 | | 3x+5=-x-11 | | -5v+2(v-8)=-25 | | 2n-1=7.5 | | -5/2=p/(4/7) | | 7x-10x+182x=-5 | | 2(x−2)=10 | | -76+12x=4x+140 | | 7.5=2n-1 | | −78x+52=−52x−78 | | x=-23x28 | | 0=24t-16t^2 | | (5x+8)=(8x-10) | | 4n+52=3n | | 12-4u=-8 | | 3x-128=3x-22 | | n-3/2=3/4-2n+3/2 | | 4y/5=32 | | 9+3.5g=11-0.5g9+3.5g=11−0.5g9 | | 6(×-7)=12(x+3) | | -75-x=-8x+44 | | 8/9(64-36)=-3/4(40+16x)+90x |

Equations solver categories