b+3/2b+(b+45)+(2b-90)=540

Simple and best practice solution for b+3/2b+(b+45)+(2b-90)=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b+3/2b+(b+45)+(2b-90)=540 equation:



b+3/2b+(b+45)+(2b-90)=540
We move all terms to the left:
b+3/2b+(b+45)+(2b-90)-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We get rid of parentheses
b+3/2b+b+2b+45-90-540=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-540*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-1080b+3=0
We add all the numbers together, and all the variables
8b^2-1170b+3=0
a = 8; b = -1170; c = +3;
Δ = b2-4ac
Δ = -11702-4·8·3
Δ = 1368804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1368804}=\sqrt{4*342201}=\sqrt{4}*\sqrt{342201}=2\sqrt{342201}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1170)-2\sqrt{342201}}{2*8}=\frac{1170-2\sqrt{342201}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1170)+2\sqrt{342201}}{2*8}=\frac{1170+2\sqrt{342201}}{16} $

See similar equations:

| 4x-2x+10-5-3=22 | | (3x+7)^2-9=7 | | -368=8(4+6x)+2x | | -8u+6(u+4)=16 | | (3x)°+x°=180° | | -2(-a+3)+6=5a+27 | | -2(-a+3)+6=5a+27 | | 22z/z=12 | | (12x)/5=48 | | 27x-3x=3x+27 | | 9x+84+3x=180 | | Z5=1+2i | | 7s/3=2 | | (15x-43)=180 | | Y=-0.9x | | x^2+16x=45 | | (10x+21)°=(13)° | | 0=5/2x-6 | | F(x)=-0.9x | | 5x(-3)+16=x | | -2(x)=x^2-3x+4 | | 3(5+-2h)+9=-30 | | (x+83)+40+65=180 | | 19/1q=4 | | -27+4y=9 | | -1/5x-18=5 | | 0.8z+15=7 | | x=3x+8x | | 20+2v=-6 | | 2x/46=8 | | x^2-6.6x+10.89=0 | | -4x-15=-10x+33 |

Equations solver categories