If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b+(b+45)+(2b-90)+3/2b+90=540
We move all terms to the left:
b+(b+45)+(2b-90)+3/2b+90-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+(b+45)+(2b-90)+3/2b-450=0
We get rid of parentheses
b+b+2b+3/2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| |5x+2|=13 | | 0=6m+7m | | 5/9p=2/3 | | 5/7=y/8 | | 1/6n=31 | | -5x^2+90x-405=0 | | 2x+35+3x-5=180 | | 75m+4387=45450-150m | | -24=5r+5r | | 35x=200 | | ½y=20- | | 5r+25=8r-81 | | 5u+3/4u=54-u | | 2a+-8a=8 | | 93+12n=12n-3+96 | | 25-9x=-25+11x | | 34-(3c=+4)=2(c+6)+c | | 2x-3=5x+30 | | x/2+16=356 | | 12x-15=-7x | | 24=3(c-5) | | x^2+(x+7)^2=13^2 | | 4(2n+2)=6(7n+8)+1 | | 5s^2+2s-4=0 | | 2r=r+8 | | −27=3(x−2) | | 13=3+30t-5t^2 | | -5(7x-6)+4=-35x+34 | | 5x^2+4x=135 | | 3x^2-5x=10x | | -3(x-1)+8(x-3)=6x+6-5x | | −20=2(x−9) |