If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying b(b + 20) = 8(4 + 3b) Reorder the terms: b(20 + b) = 8(4 + 3b) (20 * b + b * b) = 8(4 + 3b) (20b + b2) = 8(4 + 3b) 20b + b2 = (4 * 8 + 3b * 8) 20b + b2 = (32 + 24b) Solving 20b + b2 = 32 + 24b Solving for variable 'b'. Reorder the terms: -32 + 20b + -24b + b2 = 32 + 24b + -32 + -24b Combine like terms: 20b + -24b = -4b -32 + -4b + b2 = 32 + 24b + -32 + -24b Reorder the terms: -32 + -4b + b2 = 32 + -32 + 24b + -24b Combine like terms: 32 + -32 = 0 -32 + -4b + b2 = 0 + 24b + -24b -32 + -4b + b2 = 24b + -24b Combine like terms: 24b + -24b = 0 -32 + -4b + b2 = 0 Factor a trinomial. (-4 + -1b)(8 + -1b) = 0Subproblem 1
Set the factor '(-4 + -1b)' equal to zero and attempt to solve: Simplifying -4 + -1b = 0 Solving -4 + -1b = 0 Move all terms containing b to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + -1b = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -1b = 0 + 4 -1b = 0 + 4 Combine like terms: 0 + 4 = 4 -1b = 4 Divide each side by '-1'. b = -4 Simplifying b = -4Subproblem 2
Set the factor '(8 + -1b)' equal to zero and attempt to solve: Simplifying 8 + -1b = 0 Solving 8 + -1b = 0 Move all terms containing b to the left, all other terms to the right. Add '-8' to each side of the equation. 8 + -8 + -1b = 0 + -8 Combine like terms: 8 + -8 = 0 0 + -1b = 0 + -8 -1b = 0 + -8 Combine like terms: 0 + -8 = -8 -1b = -8 Divide each side by '-1'. b = 8 Simplifying b = 8Solution
b = {-4, 8}
| 3z-4+z-13= | | 1/3x=x/3 | | 2=10-(-x+2) | | 0.2y+1.4x=10 | | 3y-7=-y | | .4y+28=0 | | 90+45+x+15=180 | | 3(x+2)=2(3x+7) | | (c-2)+8=-4 | | 5y+9=4y-5 | | 7-4=2b+16 | | 8-5(2)-1= | | 7(s+3)=2(2s+3) | | 35+105+x-5=180 | | X/3)x/3)=7/9)x^2 | | -1.2h=60 | | 8x-3=-2(-4x+5) | | 0.5p=40-qd | | 15-6.5y=2y-2.15 | | -1.2h=69 | | A-1/2=1/5 | | 6-9/8x=7 | | -1.8y=x | | X+2y=3x+y+2 | | X=-1.8y | | -5n-8/4=4m/4 | | 3750×1/5 | | 20a^2-49a+30=0 | | 3750*1/5 | | -1/5z4/3 | | -3(x+6)=7(x+4) | | r-18=-4x+31-6x+27 |