a2=64

Simple and best practice solution for a2=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a2=64 equation:



a2=64
We move all terms to the left:
a2-(64)=0
We add all the numbers together, and all the variables
a^2-64=0
a = 1; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·1·(-64)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*1}=\frac{-16}{2} =-8 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*1}=\frac{16}{2} =8 $

See similar equations:

| 1200+45n=1800=60n | | (x-3)^2-(3x-2)^2=0 | | 8x(-8x)=9 | | 2x-(x/x-1)=1+(1/x-1) | | 3u^2–12u=111 | | X+x.3=120 | | 8x-(-8)=9 | | 3u2–12u=111 | | 2x^2+x+8=x^2-5 | | 2x^2+8=x^2-5 | | 10x=2x+3 | | 3(2^x+1)-2^x+2^2+5=0 | | 94x/x+3=0 | | 6(2x+4)=4(3x | | 9-1(2x-6)=7x | | 2+x=7/8x-15 | | 8x+3-12+4=0 | | 4^x=-12 | | 3n/4+1=10 | | 16x2-81=0 | | 3,01y+2=-0,99y-2 | | (3x+10)+(2x-10)=180 | | (3x)²=1 | | 3,01y+2=0,99y-2 | | (X)+2x+3=90 | | 4^x+1=25 | | 6,2-1,8y=-11,8+7,2y | | 1100=10^x | | 6,2-1,8y=-11,8+7,2 | | -8x=-5x+5 | | 3x−9=11−2x | | -4,9-0,8=0,1y-5,8 |

Equations solver categories