If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2=22564
We move all terms to the left:
a2-(22564)=0
We add all the numbers together, and all the variables
a^2-22564=0
a = 1; b = 0; c = -22564;
Δ = b2-4ac
Δ = 02-4·1·(-22564)
Δ = 90256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{90256}=\sqrt{16*5641}=\sqrt{16}*\sqrt{5641}=4\sqrt{5641}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5641}}{2*1}=\frac{0-4\sqrt{5641}}{2} =-\frac{4\sqrt{5641}}{2} =-2\sqrt{5641} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5641}}{2*1}=\frac{0+4\sqrt{5641}}{2} =\frac{4\sqrt{5641}}{2} =2\sqrt{5641} $
| 90+k=180 | | 16t-14t-(-12)=-4 | | -3w+6(w+8)=-36 | | 39=3(x-2)+2x | | 2x-5(x-2)=-8+4x4 | | (-13a)-(-16a)=-9 | | Y2+2y=399 | | 3r+24=24 | | 12s–12=12 | | V(x)=(30-2x)(15-2x)(x) | | 8x-2+4x+1=59 | | -x+(-12x)-(-17x)-(-10)=-10 | | 5y+3=7y-25 | | 14b-12b=12 | | 7x+2(2x+18)=-4x | | a/8=9/50 | | 6-3x=5x-10x=4 | | 3(x-1)^2=10 | | 3n^=-5n-2 | | -8k−-12k+-13k−-10k=5 | | 4=2(c-10) | | 3(x-1)^2-10=0 | | 84+h=180 | | 8+4m=-7+9m | | 5v-(-10v)-(-2)=17 | | 11x-15=9x+6 | | 7(u+5)+3u=-25 | | 12t-24=48 | | 2(4x+2=4x-12x-1 | | (3-w)(3w-7)=0 | | 216=w3 | | 7x-4=-30 |