If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+a-6=6
We move all terms to the left:
a2+a-6-(6)=0
We add all the numbers together, and all the variables
a^2+a-12=0
a = 1; b = 1; c = -12;
Δ = b2-4ac
Δ = 12-4·1·(-12)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*1}=\frac{-8}{2} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*1}=\frac{6}{2} =3 $
| 5n-2=43 | | 3x+18x5x-2=180 | | 3/4n+4=6 | | -1/28-(-11/20)=x | | 2(x+15)+8=4-3x | | 8+8p-6=9p+32-7p | | 1/x-3=1/3 | | 2x*4-4x*3=-2x*2 | | 3x-6+2x-8+x+2=180 | | 13=y-18 | | -7x-48=-3x-112 | | 3.7x-5=3.35 | | x+7+x+7=4x-13 | | 5(x+2.3)=19.5 | | 2x+11=3x-12 | | 3(y+4)=4(1) | | y÷7=3 | | 256-3y=3y+40 | | 16−2y=2 | | 2(-3k+5)=-4(k+4) | | 2x^2-10=232 | | -1/6m-5/8+3/4m=1/3 | | 7r=24 | | 9(d-4=5d+8 | | 2x+15=165 | | 9(d-3)=5d+8 | | 3(55)=x | | 15=y5 | | (0.4x-5)=(40+x) | | 7(x+3)=9(2x-1) | | 9xx4x=36x | | 4/3-x/2=-5 |