If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+9=25
We move all terms to the left:
a2+9-(25)=0
We add all the numbers together, and all the variables
a^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| a2+9=24 | | b/4+4=10 | | 15=k-33 | | 8x-20-6x-21=17 | | 3x-12=50 | | 0.01+600x=0.05+300x | | 8x-51=6x-5 | | x^2+2x^+x=198 | | 2x6=16 | | x+2x+x/2=99 | | 12=a-4 | | 27p=15p+108 | | 3x+9=-111-9 | | 10x/3=2x+12. | | 9/5+32=68f | | -j+12=-4j-24 | | 37=s−216s= | | s−216=37 | | 3x−4+x+1=2x+4 | | 7x+x+7x=180 | | (4x+28)+(x+19)+(3x+13)=180 | | (4x-3)+(3x+1)=180 | | -23=2x=-5 | | 5c+3=-7 | | x^2+7x−18=0 | | X^2-11x+24=-5 | | 7+7x=10.5 | | 4x+18=45 | | -17-9.2x=-102+7.8x | | 3/5p+1/5(30-p)=0 | | -17-9.2x=-102+7.8 | | 2.5=-2v+8.9 |